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Summary
Uterus transplantation represents the only opportunity for women affected 
by absolute uterine factor infertility to become pregnant. One of the major 
challenges in uterus transplantation is represented by the high rate of throm-
botic complications, often resulting in graft loss and poor outcomes. Although 
the exact etiology remains unknown, it is possible that post-implantation 
thrombosis of the uterine vessels could be the expression of microcirculation 
failure resulting from ischemia and reperfusion injury (IRI). Uterus machine 
perfusion could offer a way to ameliorate IRI and protect the graft from vas-
cular complications. Thanks to the experience gained in solid organ ex-situ 
perfusion, it can be speculated that the uterus graft could benefit from differ-
ent perfusion techniques: hypothermic oxygenated perfusion would reduce 
the ischemia reperfusion injury, with an impact on graft, recipient and off-
spring outcomes that is currently unknown; normothermic machine perfu-
sion would allow graft reconditioning, flow measurements and graft testing 
in a near-physiological environment, helping the physician to understand the 
relationship between flow, pressure and myometrial function. Lastly, ma-
chine perfusion could play a major role in improving the logistics of uterus 
transplantation, resulting in a safe expansion of the preservation time.
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INTRODUCTION

Uterus Transplantation (UT) represents a valid alterna-
tive to surrogacy and adoption in women with absolute 
uterine factor infertility (AUFI). AUFI affects 3-5% of the 
female general population 1,2 and it can be caused by the 
complete absence of the uterus (congenital uterine agen-
esis, previous hysterectomy) or uterine malformations 
(uterine myomas, adhesions, congenital malformations), 
leading to implantation failure or placentation defects 3. 
Although UT is not a life-saving procedure, it is the only 
possible treatment for AUFI  4 and remarkable improve-
ments have been made over the last decade in the field of 
uterine transplantation 5.
In the past, numerous attempts of UT in animal models 
have been made 3. In the modern age, the first UT per-
formed in humans goes back to 2000 in Saudi Arabia, 
where a 26-year-old female was transplanted with a 
uterus from a 46-year-old living donor  6. Three months 
later, unfortunately, the recipient underwent a hyster-
ectomy due to a vascular thrombosis, which led to graft 
necrosis. The first birth following UT took place in Swe-
den in 2014 7. The recipient was a 35-year-old woman with 
congenital absence of the uterus who was transplanted 
with a uterus from a 61-year-old living donor 8. In the US, 
the first birth from a living donor (LD) occurred in Texas in 
2017 9 and the first baby born after a deceased donor (DD) 
UT was in Cleveland - OH in 2019 10.
Machine perfusion (MP) improves outcomes in solid or-
gan transplantation such as liver and kidney, leading to 
an expansion of the donor pool. MP in UT is an innova-
tive concept that aims to lower the recipient morbidity 
through the reconditioning and assessment of a relatively 
new graft and improve the outcomes of both recipient and 
offspring. Although significant efforts have been made to 
reduce recipient morbidity in a non-life-saving procedure 
such as UT, approximately 20% of the reported implanted 
grafts underwent early hysterectomy due to vascular 
thrombosis 11. It is still unclear whether there is a com-
mon cause responsible for thrombi development in the 
graft after transplantation; therefore, the prediction and 
prevention of this major complication represents a real 
challenge for this emerging procedure. 
In the uterus graft, inflow and outflow structures are 
represented by the uterine arteries and veins in the LD 
and by the internal iliac vessels in the DD. It could be 
argued that the diameter of the anastomosed vessels 
plays only a marginal or no role in thrombosis, which oc-
curs in both LD and DD grafts at similar rates, whereas 
a major contribution to this vascular complication could 
be given by the microcirculation failure that follows is-
chemia and reperfusion injury (IRI) of the graft. Moreo-
ver, a co-factor that could trigger thrombi development 
can be found in the physiologic low flow of the uterus, 

which is mainly a resting muscle outside of a pregnancy. 
These graft characteristics along with microcirculation 
injury following IRI could trigger blood stasis and vas-
cular thrombosis. 

ISCHEMIA REPERFUSION INJURY 
IN VASCULARIZED COMPOSITE 
ALLOGRAFTS

Given its heterogeneous tissue composition, UT falls into 
the category of vascularized composite allografts (VCAs). 
VCAs donation and transplantation is an emerging area 
of transplant surgery that involves the transplantation 
of multiple different tissues, such as skin, bone, muscle, 
body vessels, connective tissue, and nerves either from 
a deceased or a living donor. For instance, VCAs include 
upper and lower limbs transplant, face, musculoskeletal 
segments, glands (such as parathyroids), and genitouri-
nary organs (penis, uterus) 12-15.
As for solid organs, VCAs are affected by IRI  16,17. The 
deprivation of oxygen occurring during the static cold 
storage (SCS) determines an ischemic injury of cells trig-
gered by adenosine triphosphate (ATP) depletion, mito-
chondrial respiratory dysfunction and acidosis. Ischemia 
per se determines a depletion of ATP, causing the cells 
to switch to anaerobic glycolysis, leading to acidosis, 
succinate accumulation, reactive oxygen species (ROS) 
formation, and therefore, impairment of cell function. The 
damaging effects of ischemia on cells are subsequently 
aggravated once the blood flow is restored during reper-
fusion 18. Additionally, prolonged cold ischemia time (CIT) 
and subsequent IRI trigger an inflammatory cascade that 
contributes to acute and chronic rejection in solid organ 
transplantation 18-21.
IRI in VCAs appears to be even more challenging to 
study, given these organs’ heterogeneous histological 
composition and varying degrees of susceptibility to 
ischemia. For instance, muscle seems particularly vul-
nerable to cold ischemia compared to other tissues due 
to its elevated metabolism 22, and the degree of myocyte 
damage correlates with prolonged CIT  23. The damage 
that occurs in the muscle manifests with edema, caused 
by an increase in endothelial permeability induced by in-
flammation in the tissue. This process eventually leads 
to cell dysfunction and necrosis. In addition, edema is 
responsible for raising the muscle pressure, leading to 
a compression of thin-walled capillaries and reduced 
blood flow, as previously demonstrated in the limbs 24-

26. Experimental models on the limb showed that the 
degree of myocyte damage correlates with CIT and be-
comes irreversible after 3-6 hours of SCS 27,28. Van der 
Heiden et al. demonstrated that after 16 hours of SCS 
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at least 25% of muscle fibers were necrotic and unre-
sponsive to electrical stimulation 23. Another structure 
that happens to be very vulnerable to cold ischemia 
is vasculature. Upon ischemia, the integrity of the en-
dothelial barrier is lost, leading to pro-inflammatory 
and pro-coagulatory pathways activation  29 and nitric 
oxide levels reduction, resulting in poor tissue perfu-
sion and hypoxia 30.

UTERUS PHYSIOLOGIC PERFUSION

Uterus hemodynamics changes widely during pregnan-
cy: in a non-pregnant woman, uterine artery physiologic 
blood flow is approximately 94, 5 mL/min, receiving 3% 
of the cardiac output, whereas during the second and 
third trimester the flow increases tremendously, reach-
ing a bilateral flow of 605.6 ± 220.5 mL/min and a mean 
velocity of 58.9 ± 19.5 cm/s for each artery, which repre-
sents about 10% of the cardiac output 31,32. Interestingly, 
up to date no hemodynamic complication or thrombi 
development have been reported after the first trimes-
ter in transplanted uteri, suggesting that the physiologic 
hemodynamic changes in pregnancy do not impact on 
graft vascular complications.
Another major difference between non-pregnant and 
pregnant uterine tissue is placentation and the conse-
quent hemodynamic changes that occur in the uterus 
during pregnancy. At beginning of pregnancy, the remod-
eling of the spiral uterine arteries, that occurs to supply 
nutrients to the fetus, leads to a lowering in the velocity 
and rate of the blood flow from the uterus to the placen-
ta 33. One of the main causes of preeclampsia, for instance, 
is believed to be an altered remodeling of the spiral arter-
ies, which determines an increased resistance to flow and 
consequently a faster flow, resulting in malperfusion of 
the uterine-placental tissue 34.
It can be speculated that one of the physiological changes 
that develop during pregnancy could be even protective: 
the increase of the left atrial volume index between both 
the first and second trimester and the second and third 
trimester correlates with parameters of doppler ultra-
sound of the fetal circulation and the uterine artery 35. This 
maternal cardiovascular adaptation, which is a result of 
the uterus and fetal growth, might play a protective role 
in modulating the correct uterus perfusion according to 
the graft request. Moreover, further physiological changes 
that involve uterine arteries and veins such as matrix re-
modeling, circumferential artery enlargement due to shear 
stress and nitric oxide release could represent one of the 
reasons why most hemodynamic-related complications 
occurred during the first two weeks after transplantation.
As previously demonstrated in the kidney, MP plays a role 
in modulating the vascular resistances of the organ prior 

to transplantation. For instance, HMP tends to reduce 
vascular renal resistances during perfusion in kidneys 36 
and as a result of HMP reconditioning effect, the grafts 
show better outcomes and a lower rate of delayed graft 
failure (DGF) 37, especially in ECDs 38,39 and DCDs 40 organs. 
It is not proved yet if MP reduce intratissue resistance 
in the human uterus graft, however this would represent 
an improvement that should not be underestimated for 
an organ with high resistance, lowering blood stasis and 
improving tissue perfusion. 
From a surgical perspective, one of the main peculiarities 
of the uterus as a transplantable organ consists in the 
presence of two hila, each of them involving one inflow 
and two outflows. The inflow is represented by the uterine 
artery for each side, whereas the outflow is represented 
by the inferior uterine vein and that tract of vein that goes 
from the uterus fundus to the ovary defined as the supe-
rior uterus vein. Notably, the gonadal vein can be used if 
ovary sacrifice would not represent an issue in the donor, 
as it happens in DD.

MACHINE PERFUSION APPLICATION 
IN UTERUS TRANSPLANTATION

Modulation of IRI, viability assessment, immunological 
tolerance and logistic improvement are the pillars of 
dynamic preservation. The role of MP in improving graft 
and patient outcomes after transplantation has already 
been proven and different MP techniques are currently 
being introduced in clinical practice  41. In solid organs, 
such as liver and kidney, the superiority of MP over SCS 
is clear and some benefits include lower rates of primary 
graft nonfunction and graft dysfunction, prolonged pres-
ervation time and reduced CIT 41. Up to date, no human 
uterus has been transplanted after MP. However, ac-
cording to the results achieved in kidney, liver and VCAs 
transplantation, MP could also play a key role in UT, given 
its potential in IRI modulation, flow measurements and 
graft viability assessment and feasibly preventing graft 
thrombosis, one of the major complications reported to 
date in UT.
As firstly described by Virchow in 1856, thrombosis oc-
curs in the presence of endothelial damage, stasis and 
hypercoagulation state  42. In UT, MP could find an ap-
plication in modulating and studying all of these three 
aspects. The injury to the endothelial wall of a vessel al-
ters blood flow dynamics, resulting in turbulence. This 
can depend on the quality of the graft (e.g. presence of 
irregular atheroma, bifurcations in the vessel, stenosis) 
or be a consequence of the procurement. Herein, MP 
would give an objective evaluation of the graft quali-
ty before implantation. Blood stasis can be caused by 
several factors, including microcirculation failure and 
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outflow obstruction: MP holds the potential to both pro-
tect microcirculation against IRI and allow outflow eval-
uation before transplant. Furthermore, IRI modulation 
would result in a milder immunological response in the 
recipient, lowering the risk of a hypercoagulative state.

MP to modulate IRI
The MP role in IRI modulation in VCAs has been investi-
gated in both animal and human studies. Our colleagues 
from the Cleveland Clinic proved that a swine limb can 
be perfused with ex-situ normothermic machine perfu-
sion (NMP) up until 12 hours, maintaining normal com-
partment pressure (16.4 ± 8.20 mmHg), minimal weight 
increase (0.54 ± 7.35%), and mean muscle temperature 
of 33.6 ± 1.678 °C  43. Although an increase at the end of 
perfusion of myoglobin and creatine kinase concentra-
tions of 875 ± 291.4 ng/mL and 53344 ± 14850.34 U/L, 
respectively, muscle contraction was present in all 
limbs until the end of NMP 43. Animal studies 43-45 were 
confirmed by Werner et al.  46, which studied 5 human 
limbs after 24 hours of NMP. The authors found that neu-
romuscular electrical stimulation continually displayed 
contraction until the end of perfusion, with no changes 
in the maximum fiber isometric force or response to 
nerve stimulation. Moreover, vascular resistance was 
stable and histology showed no difference in fascicular 
architecture and shape, and no necrosis was reported at 
0, 12 and 24 hours.
A previous attempt to extracorporeal perfusion of the hu-
man uterus was made in 2000 47. In this study, human uteri 
were subjected to 37°C extracorporeal perfusion with 
oxygenated Krebs-Ringer bicarbonate buffer, to simulate 
an in vivo situation. The results showed well-preserved 
myometrium and endometrium and no cellular edema, 
demonstrating that the viability and function of the organ 
could be maintained up to 24-hour perfusion time.
Up to date, viability assessment in UT remains an unex-
plored territory and yet a very crucial one. The uterus 
is mainly composed of muscle, the myometrium, which 
is particularly susceptible to the duration of CIT. There 
are multiple ways to test an organ for viability during 
transplantation: for the liver, we can assess bile produc-
tion, lactates clearance, AST/ALT levels, bilirubin levels, 
coagulation factor synthesis and several parameters 
that can be measured during MP, such as cholangio-
cytes function or metabolism markers 48,49. The success 
of a liver transplant and therefore the functionality of 
the organ can be assessed within days or weeks after 
surgery. UT success, on the other hand, is determined 
by not only the organ function but also the delivery of a 
healthy baby, which can take years 2. In this scenario, MP 
could be a great tool to assess the organ’s viability prior 
to transplantation, not only to recognize potentially dam-
aged grafts but also for organ reconditioning to prevent 

major UT complications and improve global outcomes in 
recipient and offspring.
In a study conducted in 2005, the tolerability of the hu-
man uterus to cold ischemia was tested  50. Grafts were 
preserved in cold storage (4°C) for 6 and 24 hours, in dif-
ferent preservation solutions. One parameter used to test 
the tissue viability is the ability of the myometrium fibers 
to generate spontaneous contractions, which resulted to 
be better preserved in the 6 h group.
We speculate that IRI modulation through MP might lead 
to a microcirculation enhancement, allowing physiologic 
perfusion parameters and, therefore, lowering the risk of 
graft thrombosis.

MP to evaluate uterus flows
Theoretically, in ex-situ NMP, a uterus graft with a sig-
nificant turbulent flow, low flow and a high resistance 
would be less suitable for a transplant. Furthermore, 
MP would allow an evaluation of every inflow site of the 
uterus, which includes the right and the left uterine arter-
ies, and the outflow sites, that is right and left inferior 
uterine veins and right and left superior uterine veins 51. 
Knowing these data could be of utmost importance for 
the surgeon to decide on organ viability, but also the best 
vascular anastomotic site according to the hemodynamic 
parameters. For instance, poor venous drainage from the 
inferior uterine veins detected during NMP would lead to 
an optimization of the outflow through venous anastomo-
ses of the superior uterine or ovarian veins, which could 
be monolateral or bilateral.
Furthermore, according to our transplant technique, we 
reperfuse the uterus graft after one side anastomosis to 
reduce the recipient’s warm ischemia time. Although we 
begin with the vascular site that flushes better at the back 
table (i.e. has the lower resistance), a hemodynamic value 
registered during NMP would be an objective and better 
parameter to choose which side should be anastomosed 
first.
While in NMP we can compare in-situ physiologic hemo-
dynamics with ex-situ parameters, in hypothermic ma-
chine perfusion (HMP) we expect to have lower flow and 
higher resistance than normothermia, and a comparison 
parameter is currently lacking. 
Kristek et al.  52 reported the outcomes of the first 51 
women who underwent UT, describing hysterectomy 
due to graft thrombosis in 19.6% (n  =  10) of the re-
cipients, which occurred in all the cases except for one 
within the first two postoperative weeks. Notably, 10 out 
of 12 graft failures (83.3%) occurred because of vascular 
thrombosis. A possible cause of thrombosis was found 
in focal atherosclerosis in 4 cases, vessel kinking due to 
graft displacement, artery dissection, and vein compres-
sion due to external hematoma in one case, whereas the 
cause was unknown in three recipients. In the Cleveland 
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Clinic series, three recipients experienced venous graft 
thrombosis resulting in one graft lossaz. In all cases no 
technical/anatomical issues were at the origin of the 
thrombosis.
Focal atherosclerosis in uterine arteries and/or internal 
iliac arteries could be difficult to predict considering the 
procurement technique that imposes the collection of a 
wide parametrium tissue to avoid injury to the anastomotic 
vascularization  53. Furthermore, the amount of focal ath-
erosclerosis could be difficult to interpret and its role to 
predict grafts failure may be very subjective. Ex-vivo uterus 
MP would allow an objective interpretation of the vascula-
ture patency and resistance through flow measurements.
Future studies should focus on recipient selection consid-
ering uterine vessels’ flows, velocity, and resistance and 
how the procurement and the IRI impact them, comparing 
flows and resistances between in-situ uteri and ex-situ 
normothermic perfused grafts.

POTENTIAL MACHINE PERFUSION 
DEMAND IN UTERUS TRANSPLANT 
AND FUTURE PERSPECTIVES

UT transplantation is a novel field with great potential, 
being the only method for women with AUFI to be preg-
nant. Assessing the real demand for UT is very challeng-
ing for many reasons. Firstly, not all women suffering 
from AUFI wish to have children. Secondly, there may be 
other medical, financial, psychosocial or logistical barri-
ers that would preclude couples from accessing uterus 
transplantation. Data from adoption databases are also 
difficult to interpret; however, adoption and surrogacies 
can be very challenging or even not possible, depending 
on where people live and other societal variables.
Based on AUFI prevalence, it can be roughly estimated 
that between 3000-5000 women could be interested in 
uterus transplantation in the USA every year. However, 
in the near future, women with previous hysterectomy 
would access UT, rising the number of potential UT can-
didates to around 70000/year in the US only 54-56. There-
fore, lowering morbidity, optimization of donor-recipient 
selection, donor pool expansion and logistic improve-
ment will be critical factors to improve in the future and 
MP holds the potential to improve all these four aspects.
HOPE could potentially modulate IRI through reduction 
of ROS production, less inflammatory response and 
improve immune tolerance as it happens in the liver. 
The subsequent microcirculation enhancement might 
reduce graft failure and thrombosis development, which 
should be a focus of future studies.

Ex-situ NMP would represent a near-physiological en-
vironment for uterus viability assessment looking for 
myometrium contraction, response to flow modulating 
drugs, myorelaxants or vasodilators. Moreover, flow 
measurements of uterine arteries and veins flow can be 
studied deeper, in order to understand whether there 
is an association between a low-flow uterus type and 
complications development, such as graft failure due to 
thrombus formation, and a threshold of acceptable risk 
should be identified.
The ischemia-free technique would be a promising tech-
nique to apply to UT because the favorable anatomy of 
this organ. As mentioned, the uterus has two hila and a 
total of two inflows and four outflows. This anatomical 
peculiarity could make this organ suitable for ischemia-
free perfusion technique, allowing ex-vivo perfusion to 
start before disconnecting the second hilum, and end 
the perfusion right after the graft in-situ reperfusion, 
through the first vascular side.
Normothermic regional perfusion would play a role in 
donor pool extension; however, it might find an applica-
tion only if standard criteria DD and LD cannot supply 
the UT demand.
In conclusion, MP holds the potential to improve out-
comes, facilitate donor-recipient matching in deceased 
donation, improve transplant logistics and extend the 
preservation time without compromising graft viability. 
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