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Summary
performed in very select cases due to the organ’s specific characteristics: 
high sensibility to ischemia, increased risk of rejection, and longer length of 
hospital stay in comparison to other solid organ transplants. With deteriorat-
ing donor organ quality and safety, and increasing indications for intestinal 
transplantation, innovative and safe alternatives to increase the donor pool 
should be evaluated. In this review, we present a summary of organ ma-
chine perfusion history, trends, recent findings, challenges and the poten-
tial benefits and applications for intestinal transplantation. We performed a 
literature review of organ machine perfusion studies published in the last 
decade (2012-2022) for intestine, lungs, heart, liver, kidneys and pancreas 
and collected data from the United Network for Organ Sharing (UNOS) da-
tabase aiming to show the trends of intestinal transplantation in the US and 
highlight the benefits of different perfusion techniques.

Key words: intestinal transplant, intestine, small bowel, transplantation, ma-
chine perfusion, ex-situ, ex-vivo, organ preservation

INTRODUCTION

Dr. Richard Lillehei performed the first intestinal transplant (ITx) in a human 
in 1967. At that time, immunosuppression was limited and total parenteral 
nutrition was unavailable. The earliest attempts were associated with high 
morbidity. Newer medications, surgical techniques, and management proto-
cols have improved the outcomes of ITx 1. However, ITx remains a challenging 
surgery that is performed in very select cases due to the organ’s specific 
characteristics: high sensibility to ischemia, increased risk of rejection, and 
longer length of hospital stay in comparison to other solid organ trans-
plants 2,3. With deteriorating donor organ quality and safety, and increasing 
indications for ITx, innovative and safe alternatives to increase the donor pool 
should be evaluated. In this review, we present a summary of organ machine 
perfusion history, trends, recent findings and its potential benefits and ap-
plications for intestinal transplantation.
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METHODS

We performed a literature review of organ machine per-
fusion studies published in english in the last decade 
(2012-2022) for intestine, lungs, heart, liver, kidneys and 
pancreas. We collected data from the United Network for 
Organ Sharing (UNOS) database to show the trends of 
intestinal transplantation in the US and provide our own 
group’s experience with intestinal machine perfusion.

INTESTINAL TRANSPLANT 
INDICATIONS AND TRENDS

The Intestinal Transplant Registry collected information 
from 1985 to 2012 from 82 centers around the world. 
There were 2,887 intestinal transplants performed in 
2,699 patients. Most of these cases were performed in 
North-America, followed by Europe, South-America and 
Australia-Asia. The main indication for intestinal trans- 
plant in both adult and pediatric populations was short 
gut syndrome. However, the cause of short gut syndrome 
is variable according to the population with ischemia and 
gastroschisis being the main causes for short gut syn- 
drome in adults and pediatric patients respectively 3.
According to UNOS center data, 3,305 intestinal trans- 
plants have been performed since 1990 in the U.S. (1,642 
adults and 1,663 pediatrics). The majority of the trans-
plants were performed in white/non-hispanic followed 
by black/non-hispanic and hispanic/latino patients. The 
age group with the most transplants was 1-5 years. As 
shown in (Fig. 1), ITx numbers have beendeclining since 
2008. Along with this, there has been adecline in the total 
number of ITx per year in the USsince 2008. Since the 
COVID-19 pandemic there was a 51.1% decrease in de-
ceased donor transplantation in the USA although most 
of these were due to a decrease in kidney transplants 4.

Along with the decrease in intestinal transplantation since 
2008, the number of new patients in the waiting list for 
intestinal transplantation is also decreasing: 152 patients 
were added in 2012; 171 added in 2013; 196 in 2015; 195 in 
2016; 155 in 2017. There is an increase in the waitlist from 
2019 to 2021; However, the trend over the last decade has 
been toward fewer additions overall 5-7.

MACHINE PERFUSION

Organ preservation developed from the primitive concept 
of extracorporeal circulation, which first emerged in 1812 
in the monography of Cesar Julien Jean Le Gallois  95 and 
continued with preclinical studies in 1922 by Ernest Verney 8. 
The Carrel-Lindbergh perfusion pump resulted from a col-
laboration between Alexis Carrel and Charles Lindbergh 
in 1934 9. Dr. Murray performed the first successful kidney 
transplantation in 1954, Arthur Humphries did the first ma-
chine preservation of a canine kidney followed by reimplan-
tation in 1964 10. After Dr. Thomas Starzl performed the first 
liver transplant in 1963, he started a project of liver machine 
perfusion in chimpanzees with subsequent attempts of liver 
transplantation in 1966 11,12. In 1967 Dr. Belzer developed a 
perfusion machine that allowed perfusion of a kidney for 
72 h 13 and Dr. Lillehei performed the first intestinal trans-
plantation. In 1986 Dr. Belzer’s group developed the Univer-
sity of Wisconsin solution which later became the standard 
of care for preservation 14.

TIMELINE

1812 Le Gallois - Concept of extracorporeal circulation
1922 Ernest Verney - Artificial perfusion in canine kidney. 
1934 Carrel and Lindbergh - Carrel-Lindbergh perfusion 
device. 
1954 Murray - First kidney transplant.
1959 Lillehei - Physiology of intestinal ischemia and pres-
ervation in canine model. 
1960 Belzer - Kidney perfusion device.
1964 Humphries - Machine preservation of a canine kidney. 
1966 Starzl - Machine perfusion in chimpanzee liver.
1966 Lillehei - First pancreas transplant. 
1967 Starzl - First successful liver transplant.
1967 Belzer - Continuous perfusion of a kidney for 72 h. 
1967 Lillehei - First intestinal transplant.
1986 Belzer group - UW preservation solution.
The intestine is a hollow and colonized contaminated ab-
dominal organ, where ischemia-reperfusion injury with the 
subsequent mucosal barrier damage can trig- ger bacte-
rial translocation as well as rejection. It is one of the most 
ischemia-sensitive organs with, mucosal injury occurring 
can be observed within 1 hour of cold storage and rapidly 

Figure 1. Intestinal transplant trends from 1990 to 2022 
in the United States.
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progressinges to subepithelial edema in 4 hours 15. For this 
reason, organ transportation is a crucial intermediary step 
for successful ITx 16,17. Although there have been multiple 
publications showing positive results in favor of machine 
perfusion for abdominal and thoracic organs, research on 
intestinal machine perfusion has been stagnant in compar-
ison to other organs in the last decade as shown in Table I.

CHALLENGES FOR INTESTINAL 
MACHINE PERFUSION  
AND TRANSPLANTATION

Ischemia-reperfusion injury
The small bowel receives up to 25% of total cardiac out- 
put largely consumed in the mucosa and the submucosa 
to sustain its vast surface area and its high cell-turnover 
rate. This physiological feature of the intestine leads to 
the extreme vulnerability of the mucosal layer to ischemia 
and reperfusion injury.
Interruption of blood supply results in ischemic injury, 
which can rapidly damage metabolically active tissues. 
Paradoxically, restoration of blood flow to ischemic tissue 
may lead to additional damage known as reperfusion in- 
jury which frequently exceeds the original ischemic insult.

Malabsorption
It has been shown that there is an alteration of the 
absorptive capacity of the intestine following Ischemia- 
reperfusion injury  61,62. This could lead to deficient ab- 
sorption of nutrients. Sileri et al. 63 demonstrated in a rat 
model that ischemia-reperfusion injury of the intestine 
causes both acute and chronic alterations of intestinal 
absorptive function, which was associated with signifi- 
cant mortality.

Bacterial translocation
As a consequence of epithelial damage, bacterial trans- 
location occurs when bacteria from the gastrointestinal 
tract passes through the epithelial mucosa to the circula- 
tion and reaching extra intestinal sites. By this mechanism 
bacteria can disseminate throughout the body, producing 
sepsis, shock, or multiple organ failure. Bacterial trans- 
location has been reported to occur in 44% of pediatric 
patients undergoing small bowel transplantation. The 
increase in intestinal hyperpermeability occurring in 
ischemia-reperfusion injury of the intestine is one of the 
factors causing bacterial translocation 64,65.

Damage to other organs
Ischemia-reperfusion injury to the intestine results in pro-
duction of molecules such as hydrogen peroxide, super-
oxide, and inflammatory cytokines that may harm distant 

organs. This leads to the development of systemic inflam-
matory response syndrome (SIRS), which can pro- gress to 
multiorgan failure 66. Mast cells are the most abundant in-
nate immune cells in the gut wall and they degranulate upon 
activation from ischemia-reperfusion injury, resulting in the 
release of inflammatory mediators and proteases, thereby 
triggering leukocyte recruitment and tissue injury 66. Intesti-
nal ischemia-reperfusion injury also causes pulmonary infil-
tration of neutrophils, which contributes to the development 
of acute respiratory dis- tress syndrome (ARDS) 67,68.

Rejection
Evidence shows that innate immune responses play an 
important role in the acute and chronic rejection of whole- 
organ allografts 69. Local synthesis of complement factors 
within the graft, as occurs during ischemia-reperfusion 
injury, can also contribute to T-cell priming and shaping 
of the adaptive immune response that trigger graft re- 
jection 70. In colonized organs, such as the intestine, the 
crosstalk between damage associated molecular patterns 
(DAMPs) that arise from ischemia-reperfusion injured tis- 
sue damage and pathogen associated molecular patterns 
(PAMPs), that arise from the translocation of bacteria, 
may synergistically contribute to the development of sig- 
nals that trigger alloreactivity and graft rejection 65,71.

Preservation solutions and techniques
Folkert Belzer and James Southard from the Univer- 
sity of Wisconsin developed a preservation solution 
(University of Wisconsin solution), which was the 
first to allow static cold preservation and transport 
at 4°C  11,14. The standard of care for intestinal trans- 
plant involves in-situ vascular flush with either UW 
or histidine-tryptophan-ketoglutarate solution (HTK) 
solutions, followed by static cold storage and transpor- 
tation. UW and HTK have been found to be comparable 
in terms of function. Intestinal grafts preserved in UW 
and HTK demonstrate no difference in graft and patient 
survival at 30- and 90-days posttransplant 72.
In 2007, Wei et al. 73 evaluated the potential of Polysol, 
a newly developed preservation solution, in cold stor- 
age of small bowel grafts, compared with the current 
standards, UW, Celsior and HTK and concluded that 
cold storage using Polysol resulted in significantly 
better integrity and function of small bowel grafts 
than UW. Polysol has also been studied for preserva-
tion of other organs in animal models with favorable 
results 74-76, however, Schreinemachers et al. 75 termi-
nated a clinical trial due to early rejection of kidneys 
preserved with Polysol compared to UW.
A specific consideration for intestinal preservation and 
transplant is that compared to other allografts, this 
is a hollow organ. Flushing and preservation of the 
luminal aspect should also be considered in addition 
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to preservation of the intravascular component. Intra-
luminal preservation solutions before SCS have been 
introduced in an attempt to reach and protect the en-
terocytes and theoretically prevent fluid and electro- 
lyte shifts. The luminal membrane can be used for the 
uptake of nutrients and electrolytes and the intestinal 
lumen provides direct access 76.

Hypothermic machine perfusion (HMP) is another mo- dal-
ity of cold preservation. Compared to SCS, HMP pro- vides 
continuous perfusion with cold preservation solu- tions via 
a perfusion machine, it can remove metabolic waste in a 
timely manner and provide some metabolic substrates.
To limit the damage induced by oxygen deprivation, organ 
preservation uses hypothermic conditions to facilitate a 

Table I. 2012-2022 decade experimental studies on machine perfusion.
Organ Type of perfusion 

(normothermic vs 
hypothermic)

Model 
(human vs 

animal)

Type of study 
(clinical vs 
preclinical)

Authors

Intestine Hypothermic
Normothermic
Normothermic

Human
Porcine
Rodent

Preclinical
Preclinical
Preclinical

Muñoz-Abraham et al. J Gatrointest Surg (2016) 2
Bertacco et al. JACS (2016) 18

Lysyy et al. Transplant Proc (2020) 19

Kidneys Normothermic
Hypothermic

Normothermic
Human

Clinical
Clinical

Nicholson et al. British Journal of Surgery (2015) 20

Kox et al. Transplantation (2018) 21

Normothermic
Normothermic
Normothermic
Normothermic
Normothermic
Hypothermic

Human
Porcine
Porcine
Porcine
Human
Rodent

Preclinical
Preclinical
Preclinical
Preclinical

Clinical
Preclinical

Hosgood et al. British Journal of Surgery (2015) 22

Hamar et al. Transplantation (2018) 23

Kaths et al. American Journal of Transplantation (2018) 24

Kaths et al. American Journal of Transplantation (2017) 25

Dirito et al. American Journal of Transplantation (2021) 26

Kron et al. Transplantation (2019) 27

Liver Hypothermic
Hypothermic
Hypothermic
Hypothermic
Hypothermic
Hypothermic
Hypothermic
Hypothermic

Porcine
Porcine
Porcine
Rodent 
Porcine
Human
Human
Human

Preclinical
Preclinical
Preclinical
Preclinical
Preclinical
Preclinical
Preclinical

Clinical

Liu, et al. Journal of Surgical Research (2014) 28

Fondevila, et al. Transplantation (2012) 29

M. C. Dirkes et al. Artificial Organs (2013) 30

Giannone et al. Scientific World Journal (2012) 31

Schlegel et al. Hepatology (2013) 32

Jomaa et al. Transplantation Proc (2013) 33

Monbaliu et al. Liver Transplantation (2012) 34

Dutkowski et al. Hepatology (2014) 35

Normothermic
Normothermic
Hypothermic
Hypothermic
Hypothermic
Hypothermic

Human
Human
Human
Human
Human
Human

Clinical
Clinical
Clinical
Clinical
Clinical
Clinical

Ravikumar et al. American Journal of Transplantation (2016) 36

Nasralla et al. Nature (2018) 37

Guarrera et al. American Journal of Transplantation (2015) 38

Van Rijn et al. British Journal of Surgery (2017) 39

Van Rijn et al. Liver Transplantation (2018) 40

Schlegel et al. Journal of Hepatology (2019) 41

Pancreas Hypothermic
Hypothermic
Hypothermic
Hypothermic
Hypothermic

Normothermic

Porcine
Human
Human
Human
Porcine
Porcine

Preclinical
Preclinical
Preclinical

Clinical
Preclinical
Preclinical

Hamaoui et al. Surgical research (2018) 42

Branchereau et al. Cryobiology (2018) 43

Leemkuil et al. Transplantation Direct (2018) 44

Doppenberg et al. Transplant Int (2021) 45

Prudhomme et al. Transplant Int (2021) 46

Kuan et al. Artif Organs (2017) 47

Heart Normothermic 
Normothermic

Human 
Porcine

Clinical 
Preclinical

Van Suylen et al. Transplant Direct (2021) 48

Li et al. Artificial Organs (2017) 49

Normothermic
Normothermic
Hypothermic

Porcine 
Human
Porcine

Preclinical
Clinical

Preclinical

Zhou et al. (APM 2021) 50

Messer et al. J Heart Lung Transplant (2016) 51

Michel et al. Ann Transplant (2015) 52

Lungs Hypothermic
Normothermic
Normothermic 
Normothermic
Normothermic 
Normothermic 
Normothermic
Normothermic

Human
Porcine
Porcine 
Porcine
Human 
Porcine 
Human
Human

Clinical
Preclinical
Preclinical 
Preclinical

Clinical 
Preclinical

Clinical
Clinical

Van Leeuwen et al. Transplant Direct (2021) 53

Olbertz et al. Int J Artif Organs (2019) 54

Sommer et al. Am J Transplant (2018) 55

Steinmeyer et al. Respiratory Research (2018) 56

Divithotawela et al. Jama Surg (2019) 57

Kalka et al. Int J Artif Organs (2021) 58

Urban et al. Am J Transplant (2021) 59

Shamaa. Am J Transplant (2022) 60
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regulated metabolic suppression. This reduces the ener- 
getic costs of preserving transmembrane electrochemi- 
cal gradients and suspends the activation of apoptotic 
biochemical pathways. However, it can also cause certain 

cellular damage including a maladaptive redistribution of 
membrane lipids and subsequent loss of membrane in-
tegrity. Hypothermic preservation should be carefully bal-
anced between its beneficial and detrimental effects. The 

Figure 2. Intestinal Perfusion Unit by Munoz-Abraham, et al. 2; A,B) blueprint showing luminal and vascular circulation 
and intestinal perfusion; C) interior of perfusion device with a human intestine being perfused; D) reservoir and filter 
inside Intestinal Perfusion Unit; E) blueprint of intestinal perfusion unit lid and pump location; F) temperature and flow 
velocity control (Patent: Geibel, Rodriguez-Davalos, Patron-lozano, et al; Yale University, Perfusion systems and me- 
thods of perfusing at least a portion of a small intestine. United States Patent US20160066564A).
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temperature at which damaging effects are minimized 
and protective effects maximized has shown to be around 
4°C to 10°C 77,79.
HMP can better protect organ function and decrease the 
rate of delayed graft function  21,80. Our group has previ-
ously provided proof of concept that hypothermic ex-vivo 
machine perfusion is feasible and can preserve intestinal 
grafts for extended periods with favorable pathologic 
results  2. To our knowledge, this is the first and only 
prototype to date that has experimented with machine 
perfusion for both the luminal and vascular components 
in a human model. Previous efforts focused on perfusing 
solely the intestinal lumen in animal models 81,82. A single 
report of in vitro human intestine preservation by pulsa-
tile vascular perfusion was described in 1979 by Toledo et 
al. 83. Similarly, the first attempt at hypothermic intralumi-
nal perfusion in a rat model was described in 2003 using 
UW solution  84. Despite these attempts, dual luminal-
vascular perfusion has not been previously reported.
Although hypothermia reduces cell metabolism, it does 
not stop entirely. Continuous oxygenation during cold 
organ preservation might be very useful to support the 
remaining metabolic demand. For this reason, intralumi-
nal gaseous insufflation has been attempted with oxygen, 
carbon monoxide, hydrogen and nitrogen. Oxygen insuf-
flation was found to improve tissue energetics 84,85. Nakao 
et al. 86 used CO supplementation to the UW intraluminal 
solution in a rodent model and demonstrated ameliorated 
ischemia-reperfusion injury. Hydrogen-enriched preser-
vation solutions (UW and lactated Ringers) have shown 
to significantly ameliorate graft damage, reduce graft 
oxidative stress, maintain immune homeostasis and limit 
proinflammatory molecular responses  87. Hypothermic 
oxygenated perfusion (HOPE) is a technique with an ad-
ditional oxygen supply based on HMP and has been re-
ported to be excellent for organ preservation 35,88.
Normothermic perfusion (NMP), in which whole blood 
is the main element of perfusion, has shown positive 
outcomes in the preservation of various organs (see Ta-
ble I). Depending on the device, either rotary or peristaltic 
pumps circulate an erythrocyte-based preservation so-
lution through the circuits as oxygenation/ventilation is 
performed on the circulating fluid. NMP also offers the 
capacity to perform a functional assessment of procured 
organs under near physiologic conditions, typically be-
tween 34°C and 39°C, this feature makes NMP not only 
an invaluable tool for ex-vivo functional evaluation, but 
also a highly attractive means of expanding the eligible 
donor pool. NMP Has been studied in animal models for 
abdominal multiorgan transplant where pathology of the 
small intestine showed the villi were preserved at 1 h, but 
at 6 and 12 h it showed significant damage 89.

DISCUSSION

The organ supply from deceased donors has been insuf-
ficient to meet the growing demand despite an increase 
in organ donation. This has culminated in an ongoing sig-
nificant organ shortage that affects patients worldwide. 
The consequences of the shortage include increased 
time spent on transplant waitlists, greater morbidity and 
mortality while awaiting transplant and cost increases to 
medically manage patients that may be best served by 
surgical treatment. Numerous interventions have been 
proposed to meet organ demands, including education 
programs, economic incentive strategies to encourage 
organ donation, applying the principle of opt-out consent, 
expanding the donor pool through utilization of marginal 
or expanded criteria donors, and improving organ pro-
curement and preservation strategies 90.
For decades, the gold standard organ preservation 
strategy was static cold storage (SCS), but successes in 
developing machine perfusion devices, initially created to 
preserve kidneys, have prompted investigation into us-
ing these technologies to preserve other transplantable 
organs and deliver drug therapies 91.
Another function of machine perfusion is the capacity to 
expand the available donor pool. Organs initially classi-
fied as unfit for transplantation due to one or more risk 
factors can be functionally assessed ex vivo and reclassi-
fied as suitable for transplant. Machine perfusion devices 
can provide real time data on the function of the organ 
and allow surgeons to reevaluate organs. In some stud-
ies, organ preservation with machine perfusion has been 
associated with superior patient survival, fewer adverse 
events, and improved short and long-term functional out-
comes compared to SCS.
The concept of treating isolated organs ex- vivo is an 
approach for personalized and targeted therapy that is 
being widely studied. Xu Jing et al.  92 reviewed multiple 
therapeutics that have been studied for different organs 
through machine perfusion including gene therapy, stem 
cell therapy and drug therapy with multiple agents, 
among other strategies. The use of these technologies is 
being studied to increase the organ pool and include mar-
ginal grafts; it will also allow reassessment of the organ’s 
viability for transplantation. Additionally, the prediction of 
organ function during machine perfusion is being studied 
and will likewise be possible by detailed perfusate analy-
sis including metabolomics and proteomics, leading to 
safer use of marginal grafts.
Nanoparticles have properties that make them good candi-
dates for treatment of ex-vivo organs in machine perfusion. 
When compared to other therapies, nanoparticles have 
long-lasting effects and slow-release profiles that extend 
beyond the period of perfusion 93. Endothelial targeted na-
noparticles have been delivered in an NMP setting. With 
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all of the benefits of this system, NMP is emerging as a 
device to deliver therapies within an opportunistic window 
in an attempt to reduce the damage of ischemic injury 94. 
Any drug that is typically delivered systemically can also be 
introduced during NMP for more concentrated, short term 
treatments. However, when treating ischemia-reperfusion 
injury, a more prolonged, protective action is desired, as its 
effects can persist long after the initial period of perfusion 
and after transplantation.
Regarding normothermic perfusion, there is an opportunity 
for different models to trial intestinal preservation mimicking 
the in vivo state. As previously discussed, the small bowel is 
a hollow organ and it receives its nutrients from the vascu-
lature and from the direct absorption of nutrients by entero-
cytes. As proven in multiple clinical trials for the treatment of 
sepsis and shock, bacterial translocation is diminished when 
enteral feeding is used. By providing a preservation solution 
that would allow for enterocyte feeding and blood for the 
vasculature, the deleterious effects of cold preservation and 
bacterial overgrowth could be diminished.
In general, intestinal machine perfusion development is 
behind other organs mostly because with the current vol-
umes, the industry does not consider it would be a lucrative 
investment to develop an intestinal specific pump, however, 
it has been described that customized pumps using cardiac 
pumps or ECMO machines could be adapted for this purpose 
to reduce high costs with commercial pumps 96. Additionally, 
machine perfusion companies could implement a modular ap-
proach, in which one device is able to perfuse different organs.
Although further research is needed to determine the cases 
that would benefit the most from machine perfusion and as-
sess which perfusion techniques provide the best outcomes 
for each specific type of tissue/organ, in our group’s experi-
ence and based on the available literature we believe ma-
chine perfusion has a role in the future of organ transplanta-
tion, and specifically for intestinal transplantation because of 
the characteristics and challenges described in this review.
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